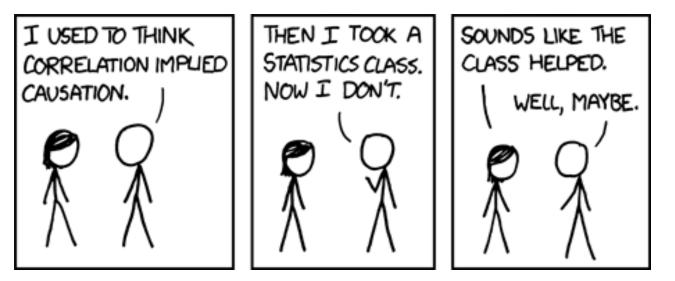
Statistical tests and effect size

Ivano Malavolta



LOOKING FURTHER

Roadmap

- Warm up
- Check for normality
- Main statistical tests
- p-value corrections
- Effect size

Context and assumptions for this course

• We focus on quantitative variables only

- o nominal
- o ordinal
- o interval
- o ratio
- Factors are nominal or ordinal
- Dependent variables typically ratios

Our statistical tests detect differences between the <u>means</u> of the dependent variable

• Treatments are <u>fixed</u> a priori

Tasks for data analysis

1. Descriptive statistics

• for understanding the "shape" of collected data

2. Select statistical test

- according to collected metrics and data distribution
- this might involve also data transformation

3. Hypothesis testing

- for providing evidence about your findings
 - i. statistical significance

4. Effect size calculation

 for understanding if your (statistically significant) results are actually relevant in practice

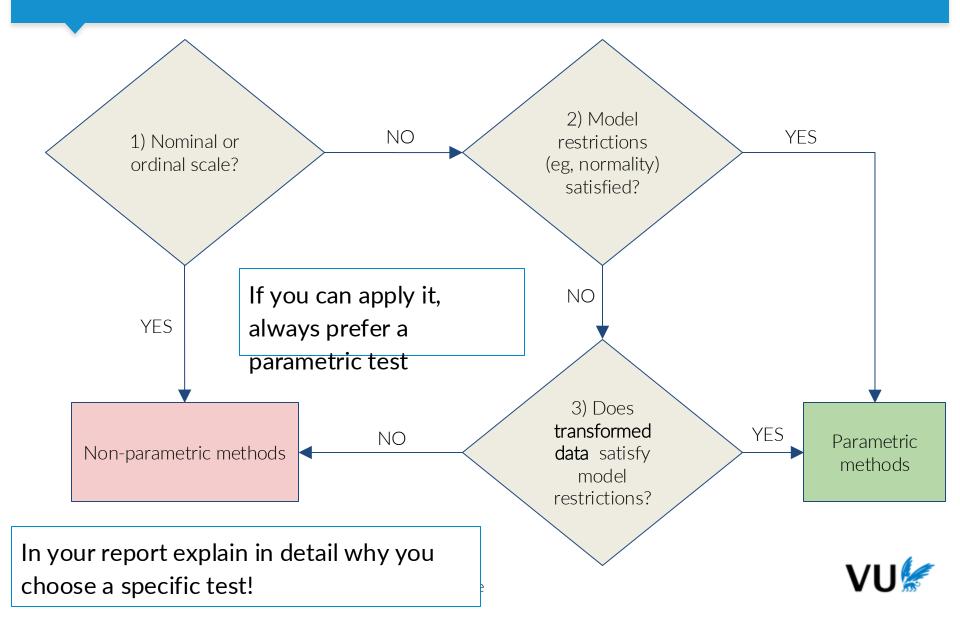
What is a statistical test?

- Calculation of a *sample statistic* <u>assuming that the null</u> <u>hypothesis is true</u>
- The calculated value of the statistic has a certain *probability*, given that the null hypothesis is true (*p-value*)

First choice: parametric VS non-parametric tests

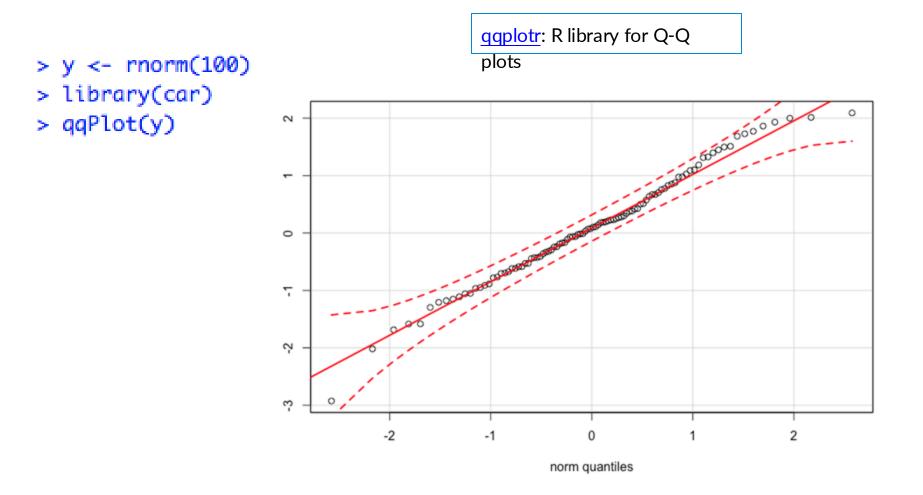
- <u>Parametric tests</u> assume specific characteristics about the data
 - typically, normal distribution
 - more powerful
 - \rightarrow lower chances of having Type II errors
- Non-parametric tests do not make any assumption about the data
 - more general
 - o less powerful
 - \rightarrow larger samples are needed

How to choose?



Check for normality

Graphical check (Q-Q plot)



Normality tests

- Normality tests
 - \circ H₀: sample is drawn from a normal distribution
- Shapiro-Wilk test (AKA Shapiro-Wilk's W)

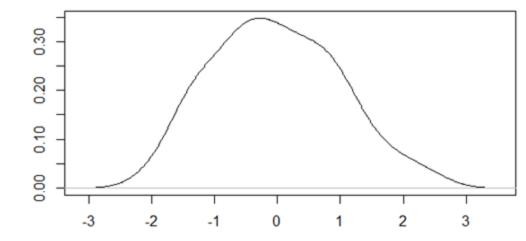
 If p-value <α for a given sample, we can conclude data is <u>NOT</u> normally distributed

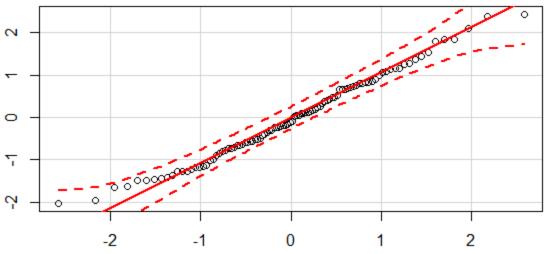
Shapiro-Wilk test

> y <- rnorm(100)
> shapiro.test(y)

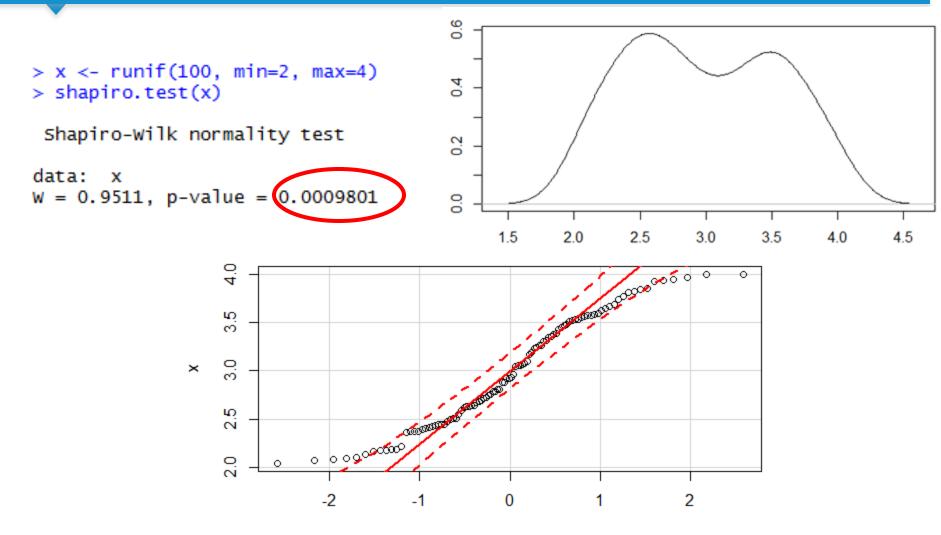
Shapiro-Wilk normality test

data: y w = 0.9856, p-value = 0.352





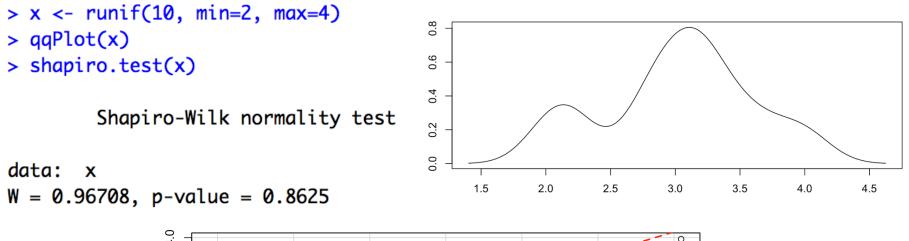
Shapiro-Wilk test

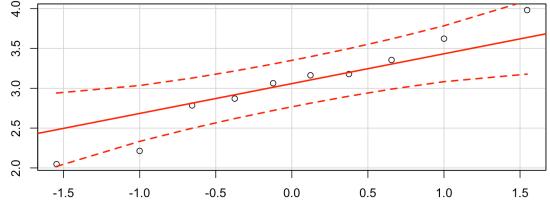


Shapiro-Wilk test

• Warning: Shapiro-Wilk is **not** robust for small samples!

• Additional verification (e.g. via Q-Q plot) is always needed





norm quantiles

13

Inspiration for checking assumptions

Check the papers EASE_2020 and MobileSoft_2020 on Canvas

A nice online resource is also available here: <u>https://www.datanovia.com/en/lessons/t-test-in-</u> <u>r/#assumptions-and-preliminary-tests-1</u>

Main statistical tests

Statistical tests VS experiment design

Design	Parametric	Non-parametric	
One factor, one treatment		Chi-2, Binomial test	
One factor, two treatments, completely randomized design	t-test, F-test	Mann-Whitney, Chi-2	
One factor, two treatments, paired comparison	Paired t-test	Wilcoxon, Sign test	
One factor, more than two treatments	ANOVA	Kruskal-Wallis, Chi-2	
More than one factor	ANOVA ^a		

One factor - 2 treatments - random design

Parametric	Non-parametric
	Chi-2, Binomial test
t-test, F-test	Mann-Whitney, Chi-2
Paired t-test	Wilcoxon, Sign test
ANOVA	Kruskal-Wallis, Chi-2
ANOVA ^a	
•	t-test, F-test Paired t-test ANOVA

t-Test

Goal: compare independent samples

- Values of the dependent variable obtained with different treatments
- For each treatment you are measuring different subjects

Hypotheses:

- Two-tailed • $H_0: \mu_2 = \mu_1$ $H_a: \mu_2 \neq \mu_1$
- One-tailed (alternative: greater) • $H_0: \mu_2 = \mu_1$ $H_a: \mu_2 > \mu_1$
- One-tailed (alternative: less) • $H_0: \mu_2 = \mu_1$ $H_a: \mu_2 < \mu_1$
- More powerful
 - Cannot say anything in the opposite direction

Parametric

t-Test in R

```
## Default S3 method:
t.test(x, y = NULL)
        alternative = c("two.sided", "less", "greater"),
        mu = 0, paired = FALSE, var.equal = FALSE,
        conf.level = 0.95, ...)
## S3 method for class 'formula'
t.test(formula, data, subset, na.action, ...)
Arguments
х
             a (non-empty) numeric vector of data values.
У
             an optional (non-empty) numeric vector of data values.
alternative
             a character string specifying the alternative hypothesis, must be one of
             "two.sided" (default), "greater" or "less". You can specify just the initial
             letter.
mu
             a number indicating the true value of the mean (or difference in means if you
             are performing a two sample test).
paired
             a logical indicating whether you want a paired t-test.
var.equal
             a logical variable indicating whether to treat the two variances as being equal.
             If TRUE then the pooled variance is used to estimate the variance otherwise the
             Welch (or Satterthwaite) approximation to the degrees of freedom is used.
```


t-Test: example

```
> x <- rnorm(100)
> y <- rnorm(100)
> t.test(x,y)
Welch Two Sample t-test
data: x and y
t = -0.6148, df = 196.807, p-value = 0.5394
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-0.3533052 0.1853781
sample estimates:
    mean of x mean of y
-0.03704463 0.04691890
```


t-Test: example 2

```
> x <- rnorm(100)
> y <- rnorm(100, mean=5)
> t.test(x,y)
Welch Two Sample t-test
data: x and y
t = -35.219, df = 197.704, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.217552 -4.664236
sample estimates:
    mean of x mean of y
0.004072809 4.944966734
```


Mann-Whitney test

Goal: compare independent samples

It can be used instead of the t-test when data is not normal

Hypotheses:

- Two-tailed • $H_0: \mu_2 = \mu_1$ $H_a: \mu_2 \neq \mu_1$
- One-tailed (alternative: greater) • $H_0: \mu_2 = \mu_1$ $H_a: \mu_2 > \mu_1$
- One-tailed (alternative: less) • $H_0: \mu_2 = \mu_1$ $H_a: \mu_2 < \mu_1$

Same hypotheses as the t-test

Non-parametric

Mann-Whitney test in R

```
wilcox.test(x, ...)
## Default S3 method:
wilcox.test(x, y = NULL,
             alternative = c("two.sided", "less", "greater"),
             mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
             conf.int = FALSE, conf.level = 0.95, ...)
## S3 method for class 'formula'
wilcox.test(formula, data, subset, na.action, ...)
Arguments
х
             numeric vector of data values. Non-finite (e.g., infinite or missing) values will be omitted.
У
             an optional numeric vector of data values: as with x non-finite values will be omitted.
alternative
             a character string specifying the alternative hypothesis, must be one of "two.sided" (default),
              "greater" or "less". You can specify just the initial letter.
mu
             a number specifying an optional parameter used to form the null hypothesis. See 'Details'.
paired
             a logical indicating whether you want a paired test.
exact
             a logical indicating whether an exact p-value should be computed.
correct
             a logical indicating whether to apply continuity correction in the normal approximation for the
             p-value.
```


Mann-Whitney test: example

- > x <- runif(100)
 > y <- rexp(100)</pre>
- > wilcox.test(x,y)

Wilcoxon rank sum test with continuity correction

```
data: x and y
W = 3862, p-value = 0.005447
alternative hypothesis: true location shift is not equal to 0
```

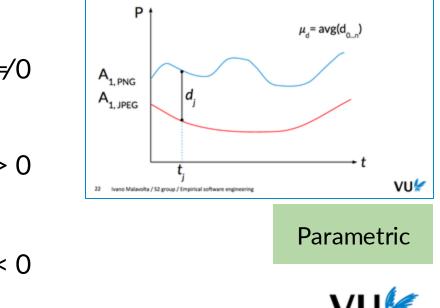

One factor - 2 treatments - paired design

Parametric	Non-parametric	
	Chi-2, Binomial test	
t-test, F-test	Mann-Whitney, Chi-2	
Paired t-test	Wilcoxon, Sign test	
ANOVA	Kruskal-Wallis, Chi-2	
ANOVA ^a		
	t-test, F-test Paired t-test ANOVA	

Paired t-Test

Goal: compare independent samples from repeated measures

- Each subject receives different treatments
- We focus on the differences exhibited by each subject with different treatments
- O Samples must be equal in size **Hypotheses**:
 - Two-tailed • $H_0: \mu_d = 0$ $H_a: \mu_d = 0$
 - One-tailed (alternative: greater) • $H_0: \mu_d = 0$ $H_a: \mu_d > 0$
- One-tailed (alternative: less) • $H_0: \mu_d = 0$ $H_a: \mu_d < 0$



1F-2T: paired comparison design

Paired t-Test: example

```
> x <- rnorm(100)
> y <- rnorm(100, mean=5)
> t.test(x,y, paired=TRUE)
Paired t-test
data: x and y
t = -34.0292, df = 99, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
-5.364349 -4.773235
sample estimates:
mean of the differences
-5.068792
```


Wilcoxon signed-rank test

Goal: compare independent samples from repeated measures

• It can be used instead of the paired t-test in case of not normal data

Hypotheses:

- Two-tailed • $H_0: \mu_d = 0$ $H_a: \mu_d = 0$
- One-tailed (alternative: greater) • $H_0: \mu_d = 0$ $H_a: \mu_d > 0$
- One-tailed (alternative: less) • $H_0: \mu_d = 0$ $H_a: \mu_d < 0$

28 Ivano Malavolta / S2 group / Statistical tests and effect size

Same hypotheses as the paired t-test

Non-parametric

Wilcoxon signed-rank test: example

> x <- runif(100)
> y <- rexp(100)
> wilcox.test(x,y, paired=TRUE)

Wilcoxon signed rank test with continuity correction

data: x and y v = 1110, p-value = 1.153e-06 alternative hypothesis: true location shift is not equal to 0

>=1 factors - >2 treatments

Design	Parametric	Non-parametric
One factor, one treatment		Chi-2, Binomial test
One factor, two treatments, completely randomized design	t-test, F-test	Mann-Whitney, Chi-2
One factor, two treatments, paired comparison	Paired t-test	Wilcoxon, Sign test
One factor, more than two treatments	ANOVA	Kruskal-Wallis, Chi-2
More than one factor	ANOVA ^a	

ANOVA (ANalysis Of VAriance)

Goal: understand how much of the total variance is due to differences within factors, and how much is due to differences across factors

- Many types of ANOVA tests
- Works for many experiment designs

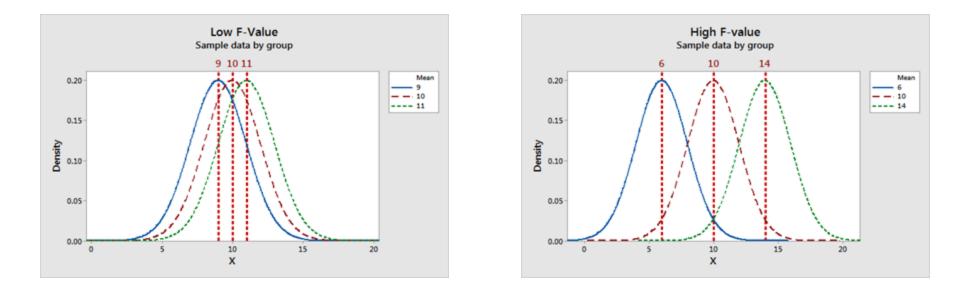
Hypotheses:

$$H_0: \mu_1 = \mu_2 = \mu_3 \qquad H_a: \mu_1 = /\mu_2 \vee \mu_1 = /\mu_3 \vee \mu_2 = /\mu_3$$

Parametric

F-statistic

F = Variation <u>among</u> sample means / variation <u>within</u> the samples



when $H_0 \rightarrow F$ follows a known F-distribution

• the mean of the F-distribution tends to be 1

F tends to be larger if H₀ is false

 \rightarrow the more F deviates from 1, the stronger the evidence for unequal population variances

- Methods to determine significance level:
 - *textbook*: compare F against a table of critical values (according to DF and α). If F > F_{critical}, reject H₀
 - **computer-based:** compute the p-value of finding F greater than the observed value. If $p < \alpha$, reject H₀

Types of ANOVA

• One-way ANOVA

- o one factor, >2 treatments
- if 2 treatments: equivalent to *t*-test (almost never used)

```
> summary(data$Watts)
                                                  #one-way
  Min. 1st Qu. Median
                         Mean 3rd Qu.
                                        Max.
                                                  data <- read.csv('practice_1_power.csv')</pre>
         214.0 214.2
                        215.7 219.8
                                       222.2
 207.3
> summary(data$Case)
                                                  data.aov <- aov(Watts~Case, data=data)</pre>
mysql_modified mysql_original mysql_vanilla
                                                  summary(data.aov)
           10
                         10
                                        10
 .
```


Types of ANOVA

• Factorial ANOVA

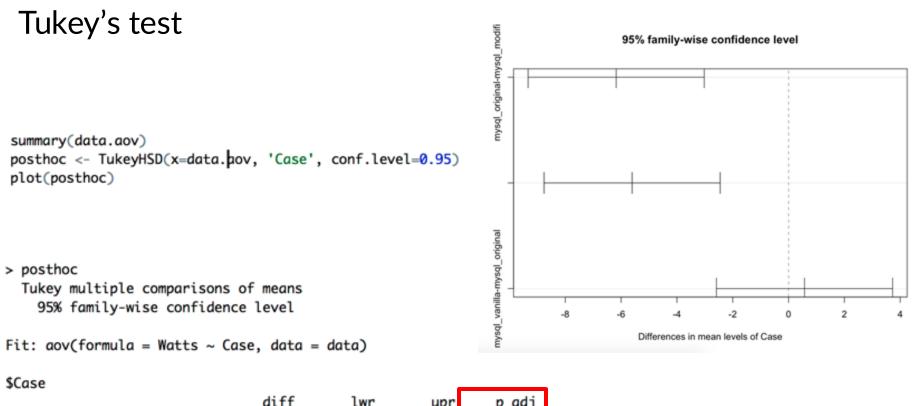
- o 2 (two-way) or more factors
- o any number of treatments

also computes interactions

```
# #two-way
server <- factor(sample(1:3, 30, replace=TRUE), levels=c(1:3), labels=c('Server 1', 'Server 2', 'Server 3'))
data_new <- cbind(server, data)
data.2aov <- aov(Watts~Case*server, data=data_new)
summary(data.2aov)
#</pre>
```

> summary(data.2aov) Df Sum Sq Mean Sq F value Pr(>F)15.421 7.57e-05 *** 2 232.95 116.48 Case 2 32.22 16.11 2.133 0.143 server Case:server 4 27.80 6.95 0.920 0.471 Residuals 21 158.62 7.55 _ _ _ Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

How to know which treatments really differ?



	diff	lwr	upr	p adj
<pre>mysql_original-mysql_modified</pre>	-6.176	-9.331299	-3.020701	0.0001302
mysql_vanilla-mysql_modified	-5.605	-8.760299	-2.449701	0.0004301
mysql_vanilla-mysql_original	0.571	-2.584299	3.726299	0.8953945

ANOVA assumptions

- The dependent variable should be **continuous**
- Samples must be **independent**
- Normal distribution of the dependent variable between the groups (approximately)
- Residuals (aka errors in the sample) should be normally distributed
 - o qqPlot(residuals(myData.aov))
- Homoscedasticity

Assumptions violated

 \rightarrow non-parametric alternative

- variance between groups should be the same
 - leveneTest(x ~ y, data=myData)

ANOVA: non-parametric alternative

• Kruskal-Wallis: one-way non-parametric ANOVA

• one factor, multiple treatments

no estimate of the treatment effect (due to ranking)

```
#non-parametric one-way
kruskal.test(Watts~Case, data=data)
```

> kruskal.test(Watts~Case, data=data)

Kruskal-Wallis rank sum test

data: Watts by Case Kruskal-Wallis chi-squared = 12.718, df = 2, p-value = 0.001732

Use <u>ARTool</u> when you have >2 factors

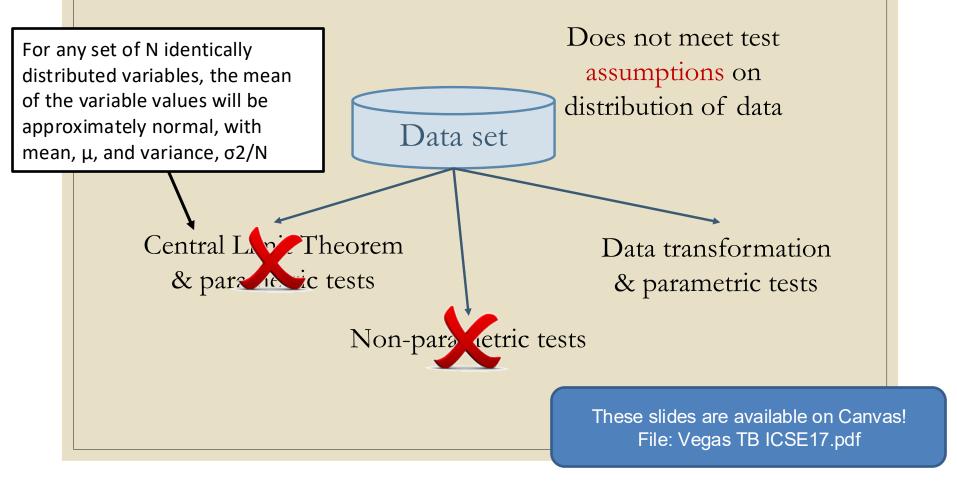
Non-parametric

Main statistical tests

You are mea		ou are measuring the same <u>subjec</u> ainst different treatments	Use this in case the values of your dep. var are not normally distributed	
Outcome Variable	Are the observations independent	dent or correlated?	Alternatives if the normality assumption is violated (and small sample size):	
Continuous (e.g. pain scale, cognitive function)	Ttest: compares means between two independent groups ANOVA: compares means between more than two independent groups	Paired ttest: compares means between two related groups (e.g., the same subjects before and after) Repeated-measures ANOVA: compares changes	Non-parametric statistics Wilcoxon sign-rank test: non-parametric alternative to the paired ttest Wilcoxon sum-rank test (-Mapp, Whitpoy II tost): pap	
	Pearson's correlation coefficient (linear correlation): shows linear correlation between two continuous variables	over time in the means of two or more groups (repeated measurements) Mixed models/GEE	(=Mann-Whitney U test): non- parametric alternative to the ttest Kruskal-Wallis test: non- parametric alternative to ANOVA	
	Linear regression: multivariate regression technique used when the outcome is continuous; gives slopes	modeling: multivariate regression techniques to compare changes over time between two or more groups; gives rate of change over time	Spearman rank correlation coefficient: non-parametric alternative to Pearson's correlation coefficient	

Data transformation

PARAMETRIC VS. NON-PARAMETRIC



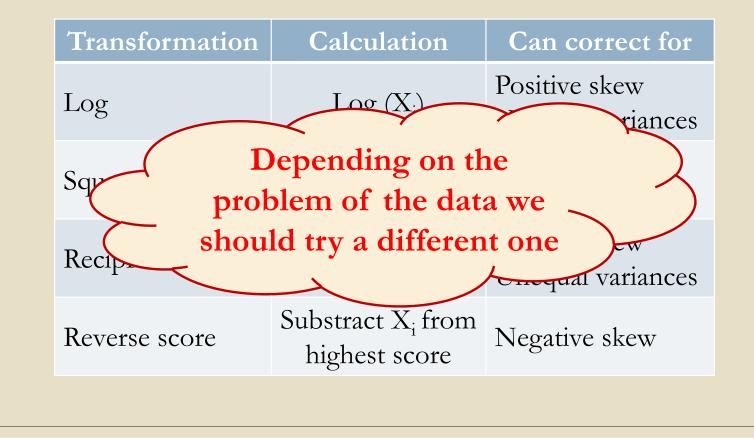
DATA TRANSFORMATION

- I Corrects several problems in data:
 - I Non-normality
 - I Unequal variances
- Will not change the relationships between variablesThe relative differences between scores for a given variable stay the same
- Does change the differences between different variablesChanges units of measurement

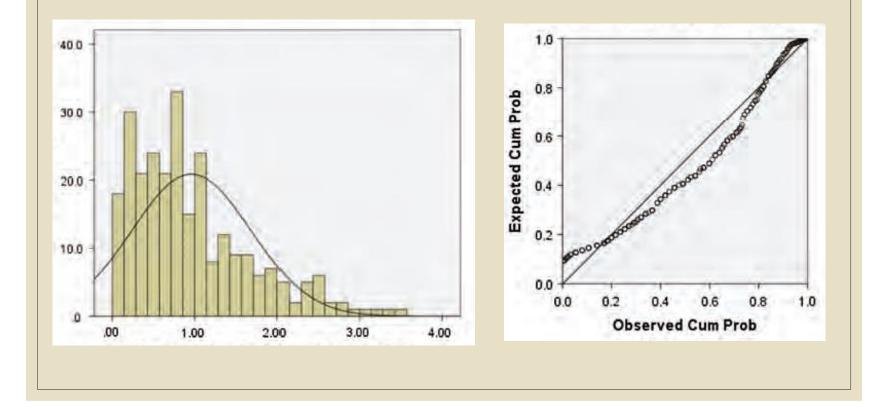
(SOME) POSSIBLE TRANSFORMATIONS

Transformation	Calculation	Can correct for
Log	Log (X _i)	Positive skew Unequal variances
Square root	$\mathbb{I} \operatorname{X}_{\mathrm{i}}$	Positive skew Unequal variances
Reciprocal	$1/X_i$	Positive skew Unequal variances
Reverse score	Substract X _i from highest score	Negative skew

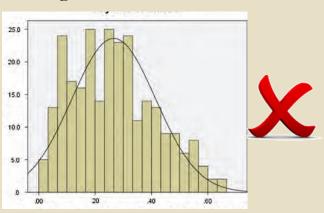
(SOME) POSSIBLE TRANSFORMATIONS

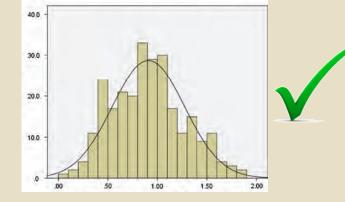


AN EXAMPLE: ORIGINAL DATA

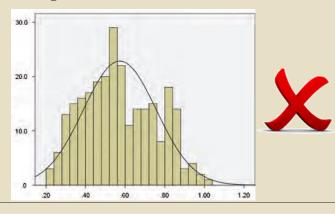


AN EXAMPLE: TRANSFORMED Log transformation DATA_{Square root transformation}





Reciprocal transformation



DISCUSSION

I Data transformation looks like a better option

I Do not forget to "un-transform" for data interpretation

I Un-transformation is necessary for:

- I Mean
- I Confidence interval for mean

Un-transformation is not necessary for:

- I Significance
- I Power

TIPS

- When selecting statistical test check test assumptions on distribution of data
- If distribution assumptions are not met:
 Do not use limit central theorem
 Try data transformation first
 If it does not work, use non-parametric tests
- I If you transform, do not forget un-transform

- You can use the <u>bestNormalize</u> package to discover the best transformation to apply
- Remember to apply the same transformation **to ALL the measures of a dependent variable**
 - multiple variables, in case you analyze interactions
- When you will visualize tables and plots you will need to show the nontransformed data
- If you do not manage to satisfy the assumptions of your statistical test (after transforming), then indeed you can go with a non-parametric one (this is always the safest way, even though it will negatively impact the power of your tests)

Correction of p-values

Example

Dependent variable = energy consumption of the app Independent variables =

- A: Image encoding algorithm: {png, jpeg}
- B: Mobile device type: {high-end, low-end}
- C: Network conditions: {wifi, 3G}

You perform 3 tests:

- t.test(A, B)
- t.test(A, C)
- t.test(B, C)

P(at least one significant result)

= 1 - P(no significant results)
 = 1 - (1 - 0.05)³
 ≈ 0.15

\rightarrow 15% chance of seeing relevant results, when there may be none

The problem

- - \rightarrow you have to adjust your α (it was 0.05)

Three main correction techniques:

- Bonferroni
- Holm
- Benjamini- Hochberg

Bonferroni correction

Supposing we are doing N tests,

we can reject H_0 if the p-values of those tests are below α/N

We can reject the H_0 if a test provides a p-value < 0.05/3=0.016

 \rightarrow 0.016 is our new significance threshold!

```
> p.adjust(c(0.01,0.02,0.03),method="bonferroni")
[1] 0.03 0.06 0.09
```

```
Usage
p.adjust(p, method = p.adjust.methods, n = length(p))
p.adjust.methods
# c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY",
# "fdr", "none")
```


Holm's correction

Less stringent than Bonferroni's

Procedure:

- rank your p-values from the smallest to the largest
- multiply the first by N, the second by N-1, etc.
- a p-value is significant if, after multiplied, it is < 0.05

P-values of the tests: {0.01, 0.02, 0.03}

Benjamini- Hochberg 's correction

The least stringent correction (highly suggested)

Procedure:

- rank your p-values from the smallest to the largest
- assign ranks to each p-value according to its position

- first=1, second=2, third=3, ...

compute the BH critical value for each p-value as (i/N)Q

 $i = the i^{th} p$ -value

N = the total number of p-values

Q = the acceptable false discovery rate as percentage (e.g., 50%)

• identify **P** as the highest p-value that is smaller than the BH critical value

55 Ivano Malavolta / S2 group / Statistical tests and effect size

considered as significant **VU**

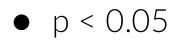
Benjamini- Hochberg 's correction

P-values of the tests: {0.01, 0.02, 0.03, 0.04, 0.2, 0.4, 0.8, 0.9}

Original p- value	Rank	ВН
0.01	1	(1/8)*0.5= 0.0625
0.02	2	(2/8)*0.5= 0.125
0.03	3	(3/8)*0.5= 0.1875
0.04	4	(4/8)*0.5= 0.25
0.2	5	(5/8)*0.5= 0.3125
0.4	6	(6/8)*0.5= 0.375
0.8	7	(7/8)*0.5= 0.4375
0.9	8	(8/8)*0.5= 0.5

Effect size

Effect Size



Effect Size: quantitative measure of the **strength** of a phenomenon

Actual difference:
 0.0001%

Effect size measures

• Cohen's d

 parametric statistics 				
• Cliff's delta				
• non-parametric statistics				
Design	Parametric		Non-parametric	
One factor, one treatment One factor, two treatments, completely randomized design One factor, two treatments, paired comparison One factor, more than two treatments More than one factor	t-test, F-test Mann-Whitney, Paired t-test Wilcoxon, Sign t		Chi-2, Binomial test Mann-Whitney, Chi-2 Wilcoxon, Sign test Kruskal-Wallis, Chi-2	

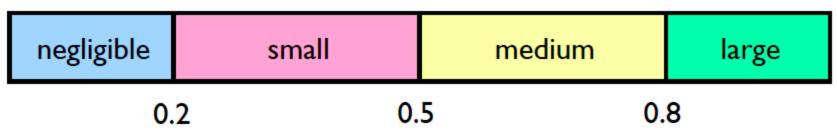
Cohen's d

The magnitude of a main factor treatment effect on the dependent variable

$$d = \frac{\bar{x_1} - \bar{x_2}}{s}$$

Where:

- x_1 , x_2 = the means of the two groups
- s = standard deviation



Values:

0 = full overlap

~no overlap

• • •

1 = 1-sigma distance

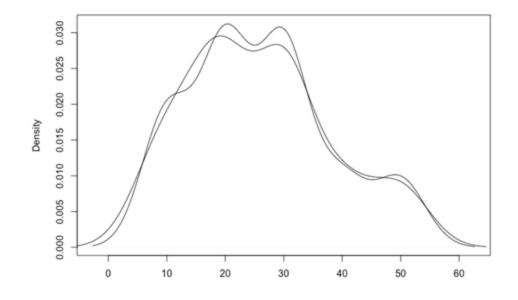
between the means

3 = 3-sigma distance \rightarrow

Cohen's d in R

- > treatment1 <- c(10,10,20,20,20,30,30,30,40,50)</pre>
- > treatment2 <- c(12,8,20,20,18,30,30,30,40,50)</pre>
- > cohen.d(treatment1,treatment2, paired=F, pooled=F)

Cohen's d



Cliff's delta

Represents the degree of overlap between the two distributions of scores

$$d = rac{\#(x_i > x_j) - \#(x_i < x_j)}{}$$

mn

Values:

+1 = all the values of one

group > all the values of

0 = full overlap

the other one

-1 =the inverse

Where:

62

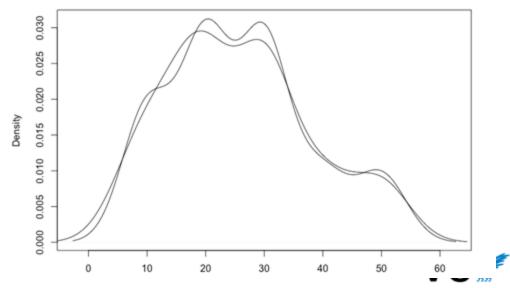
- x_i = the values of the first group
- x_i = the values of the second group
- m, n = the cardinalities of the two groups

	negligible	small	medium	large	4
lvano	0	.147 0.	33 0	.47	VU🐓

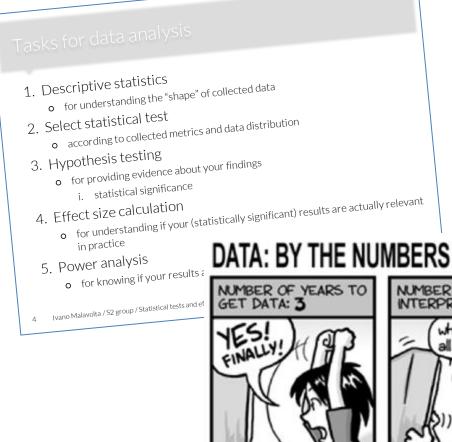
Cliff's delta in R

- > treatment1 <- c(10,10,20,20,20,30,30,30,40,50)</pre>
- > treatment2 <- c(12,8,20,20,18,30,30,30,40,50)</pre>
- > cliff.delta(treatment1,treatment2)

Cliff's Delta

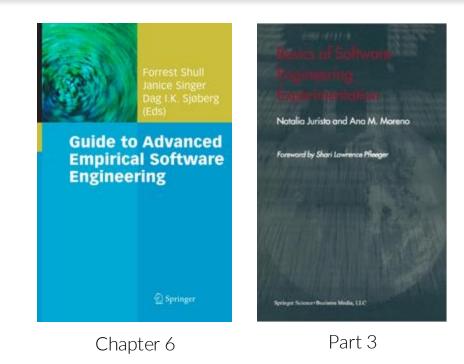


What this module means to you?



www.phdcomics.com

Readings



Slides of Sira Vegas's technical briefings at ICSE 2017 (on Canvas)

[1] Dybå, Tore, Vigdis By Kampenes, and Dag IK Sjøberg. "A systematic review of statistical power in software engineering experiments." Information and Software Technology 48.8 (2006): 745-755.

Acknowledgements

Some contents of lecture extracted from:

• Giuseppe Procaccianti's lectures at VU

